
fmed-09-894726 April 21, 2022 Time: 11:40 # 1

ORIGINAL RESEARCH
published: 21 April 2022

doi: 10.3389/fmed.2022.894726

Edited by:
Md.Mohaimenul Islam,

Aesop Technology, Taiwan

Reviewed by:
Chuantao Zuo,

Fudan University, China
Jimin Hong,

University of Bern, Switzerland

*Correspondence:
Bingcang Huang

hbc9209@sina.com

†Data used in preparation of this
manuscript were obtained from the
Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database
(adni.loni.usc.edu). As such, the

investigators within the ADNI
contributed to the design and

implementation of ADNI and/or
provided data but did not participate

in the analysis or writing of this report.
A complete listing of ADNI

investigators can be found at:
https://adni.loni.usc.edu/wp-content/

uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf

Specialty section:
This article was submitted to

Family Medicine and Primary Care,
a section of the journal

Frontiers in Medicine

Received: 12 March 2022
Accepted: 28 March 2022

Published: 21 April 2022

Citation:
Jiang J, Zhang J, Li Z, Li L,

Huang B and Alzheimer’s Disease
Neuroimaging Initiative (2022) Using

Deep Learning Radiomics
to Distinguish Cognitively Normal

Adults at Risk of Alzheimer’s Disease
From Normal Control: An Exploratory

Study Based on Structural MRI.
Front. Med. 9:894726.

doi: 10.3389/fmed.2022.894726

Using Deep Learning Radiomics to
Distinguish Cognitively Normal
Adults at Risk of Alzheimer’s Disease
From Normal Control: An Exploratory
Study Based on Structural MRI
Jiehui Jiang1,2, Jieming Zhang3, Zhuoyuan Li3, Lanlan Li3, Bingcang Huang1* and
Alzheimer’s Disease Neuroimaging Initiative†

1 Department of Radiology, Gongli Hospital, School of Medicine, Shanghai University, Shanghai, China, 2 School of Life
Sciences, Institute of Biomedical Engineering, Shanghai University, Shanghai, China, 3 School of Communication
and Information Engineering, Shanghai University, Shanghai, China

Objectives: We proposed a novel deep learning radiomics (DLR) method to distinguish
cognitively normal adults at risk of Alzheimer’s disease (AD) from normal control based
on T1-weighted structural MRI images.

Methods: In this study, we selected MRI data from the Alzheimer’s Disease
Neuroimaging Initiative Database (ADNI), which included 417 cognitively normal adults.
These subjects were divided into 181 individuals at risk of Alzheimer’s disease (preAD
group) and 236 normal control individuals (NC group) according to standard uptake ratio
>1.18 calculated by amyloid Positron Emission Tomography (PET). We further divided
the preaAD group into APOE+ and APOE− subgroups according to whether APOE ε4
was positive or not. All data sets were divided into one training/validation group and
one independent test group. The proposed DLR method included three steps: (1) the
pre-training of basic deep learning (DL) models, (2) the extraction, selection and fusion
of DLR features, and (3) classification. The support vector machine (SVM) was used as
the classifier. In the comparative experiments, we compared our proposed DLR method
with three existing models: hippocampal model, clinical model, and traditional radiomics
model. Ten-fold cross-validation was performed with 100 time repetitions.

Results: The DLR method achieved the best classification performance between preAD
and NC than other models with an accuracy of 89.85% ± 1.12%. In comparison,
the accuracies of the other three models were 72.44% ± 1.37%, 82.00% ± 4.09%
and 79.65% ± 2.21%. In addition, the DLR model also showed the best classification
performance (85.45% ± 9.04% and 92.80% ± 2.61%) in the subgroup experiment.

Conclusion: The results showed that the DLR method provided a potentially clinical
value to distinguish preAD from NC.

Keywords: deep learning radiomic, Alzheimer’s disease, magnetic resonance imaging, support vector machine,
artificial intelligence
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by progressive cognitive decline (1). Due to the
irreversibility of AD, it is critical to identify AD patients at an
ultra-early stage. According to the latest A-T-N diagnosis criteria
(2–4), individuals who showed obvious brain amyloid beta
(Aβ+) deposition have entered the Alzheimer’s continuum and
represented a high-risk of AD. This population could be defined
as the preclinical AD group (PreAD) (5, 6).

So far, structural resonance imaging (MRI) have been widely
used in the diagnosis of AD (7–11). For instance, previous studies
have shown that patients with mild cognitive impairment(MCI)
had increased hippocampal atrophy compared to normal control
(NC) subjects (12). The atrophy of hippocampal and entorhinal
cortex could also be used as an index to predict the conversion
from MCI to AD (13).

Currently, artificial intelligence (AI) techniques based on
MRI have frequently been used in the early diagnosis of AD.
One typical AI application is radiomics. For example, Zhao
et al. investigated hippocampal texture radiomics features as
effective MRI biomarkers for AD and achieved an accuracy
of 87.4% to distinguish AD and normal controls (NC)
(14). Zhou and Shu et al. utilized MRI radiomics features
to predict development of MCI to AD and achieved the
accuracy of 78.4 and 80.7%, respectively (15, 16). Notably,
Li et al. conducted an exploratory study to diagnosis preAD
from NC based on radiomics multi-parameter MRI and
obtained an average accuracy of 83.7% [T. (17)]. Although
the feasibility of traditional radiomics methods has been
proven, these methods could not be widely applied because
of obvious shortcomings, such as manual extraction of
regions of interest (ROIs) and hand-coding, which usually
require complex manual operations. Therefore, an alternative
method is required.

The deep learning radiomics (DLR) method may be the
alternative (18, 19). This technique was able to mine the
high dimension features of medical images automatically, and
effectively address the shortage of hand-coding by radiomics.
Recently, DLR has been used in brain tumor-related research and
AD diagnosis (20, 21). For example, previous studies achieved
good predictive performance of preoperative meningioma with
an accuracy of 92.6% (22). Wang et al. extracted MRI-based
DLR features to predict the prognosis of high-grade glioma (23).
For AD diagonosis, early DLR-based methods always focused on
pre-determined regions of interest prior to deep training, which
may hamper diagnostic performance. For example, Khvostikov
et al. and Li et al. trained DLR models based on pre-
extracted hippocampal regions of MRI and other multimodal
neuroimaging data (24, 25). Apart from the above, Basaia et al.
used a single cross-sectional MRI scan and deep neural networks
to automatically classify AD and MCI, with high accuracies of
98.2% between AD and NC, and of 74.9% from MCI to AD
progression (26). Lee et al. also used DLR method for AD
classification and achieved the accuracies of 95.35% and 98.74%
on different datasets (27). However, there is no existing DLR
model for preAD detection.

Therefore, in this study we hypothesized that the DLR
method was useful in the diagnosis of PreAD. Considering the
hippocampus volume has not been shrunk in AD early stage,
we used MRI images of the whole brain for DLR classification.
In addition, we also hypothesized that the DLR technique could
achieve high classification accuracy in detecting subgroups of
preAD from NC, such as APOE ε4+ individuals.

MATERIALS AND METHODS

Figure 1 showed the overall framework of this study, which
consisted of six steps: (1) enrolled subjects; (2) imaging
preprocessing, including segmentation, normalization and
smoothing; (3) basic deep learning (DL) model pre-training, in
this step several DL models were pre-trained in order to get the
best one for DLR feature extraction; (4) feature extraction and
fusion; (5) classification; (6) comparative experiments.

Subjects
The data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database.1 ADNI is
a longitudinal, multicenter study to develop clinical, imaging,
genetic and biochemical biomarkers for early detection and
tracking of AD. The latest information is available at http://adni.
loni.usc.edu/about/.

In this study, we collected 236 NC and 181 preAD data.
Demographic data included age, sex, gender, education,
neuropsychological assessment tests [Dementia Rating Scale
(CDRSB) and Mini-Mental State Examination (MMSE)],
Apolipoprotein E (APOE) ε4 and imaging information. T1-MRI
and amyloid positron emission tomography (PET) images were
selected for all subjects. The preAD group was defined as who
standard uptake value ratio (SUVR) value of amyloid PET was
>1.18 in whole cerebral cortex (17, 28). Whole cerebellum was
used for reference when deriving SUVR. In addition, to validate
our proposed DLR model, we enrolled 12 preAD individuals
who converted into the MCI state. We selected MRI images in
both baseline and MCI stages.

All subjects were divided into two groups, one
training/validation group and one independent test group.
The training/validation group was from ADNI 1, ADNI 2
and ADNI 3, including 212 NC and 162 preAD subjects. The
test group was from ADNI Go, including 24 NC subjects and
19 preAD subjects.

Images Acquisition and Preprocessing
The image acquisition process was described in the ADNI
website at http://adni.loni.usc.edu/about/. All MRI data have
been evaluated by quality control (QC) at the Mayo Clinic Aging
and Dementia Imaging Research Laboratory. The SUVR values of
Amyloid PET were downloaded from the ADNI website directly.

The preprocessing of MRI images was performed by statistical
parametric mapping (SPM12) software2 on MATLAB 2016b

1https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf
2https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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FIGURE 1 | The framework of this study.

platform.3 First, MRI images were segmented into probabilistic
gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF); Then, each GM image was normalized into the Montreal
Neurological Institute (MNI) space by diffeomorphic anatomical
registration via exponentiated lie algebra, and smoothed using
an 8-mm Gaussian-smoothing kernel. As a result, each image
has a spatial resolution of 91 × 109 × 91 with a voxel size of
2 mm × 2 mm × 2 mm; Finally, in order to adapt and speed
up the training of the deep learning model, 3D images were sliced
from the axial direction into 91 single-channel images with the
size of 91× 109 to tile 2D images, and then resized into 224× 224
for normalizing. Each 3D MRI image was tiled into a group of
2D images and resized into 224 × 224 pixels for subsequent
DL model training.

The Proposed Deep Learning Radiomics
Method
Figure 2 illustrates our proposed DLR method. The method
consisted of three parts: (1) Basic DL model pre-training. We
used six Convolutional Neural Networks (CNN) networks as
candidate DL models and pre-trained them, respectively. After
training, we selected one as the final DL model to obtain the
DLR features according to the classification results. (2) Feature
fusion. To obtain DLR features, we obtained DLR feature maps
from the last convolutional layer of the final selected DL model,
and extracted the maximum value of each feature map through
global max pooling. These extracted features were defined as DLR

3https://www.mathworks.com/products/matlab.html

features and combined with clinical features (sex, education, etc.)
as input data for classification. (3) Classification. Based on the
above features, the support vector machine (SVM) was used as
the classifier to distinguish preAD from NC.

Training for Candidate Deep Learning Models
Six CNN models, including AlexNet, ZFNet, ResNet18,
ResNet34, InceptionV3, and Xception, were applied in the
training step to define the best training model.

• AlexNet: it is the first CNN network architecture that
uses ReLU as the activation function, and uses interleaving
pooling technology in CNN (29).
• ZF-Net: it is fine-tuned on the basis of AlexNet. It

uses deconvolution to visually analyze the intermediate
feature map of CNN and improves model performance by
analyzing feature behavior (30).
• Inceptionv3: it improves the CNN model by using

convolution decomposition and regularization (31).
• Xception: it improves Inception V3 by using depth wise

separable convolution to replace the Inception module
(32, 33).
• ResNet: it introduces new network features based on

the previous traditional CNN network (34). Several
ResNet subtypes were proposed according to different
numbers of hidden layers, such as ResNet18, ResNet34,
ResNet101, and so on.

As an example, Figure 3 showed the network structure of
the ResNet34 model.
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FIGURE 2 | The flow chart of the proposed DLR model.

FIGURE 3 | (A) The network structure of the ResNet34 model. “7 × 7” represents the size of the convolution kernel, “conv” represents convolution, “avg pool”
represents average pooling, and “fc” represents fully connected layer. “64” means the number of channels, and “/2” means stride of 2. (B) Residual learning: a
building block. x represents direct identity mapping, F(x) represents residual mapping, and F(x)+x is output.

During the raining step, the selected six models were trained
in the training/validation group and tested in the test group.
Guided by the test results, we optimized the DL model by tuning
hyper parameters.

Classifier
We combined DLR features and clinical information (gender,
education, age, etc.) as input data for classification. SVM was used
as the classifier. As a classic supervised learning method, SVM
has been widely used in statistical classification and regression

analysis due to its ability to map vectors to a higher dimensional
space that creates a maximum margin hyperplane to achieve high
classification performance (35). In this study, we used the linear
kernel function in SVM to detect classification reliability and
generalization ability.

Comparative Experiments
To demonstrate the superiority of our proposed DLR method, we
compared our model and three existing models in comparative
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TABLE 1 | Demographic information for subjects.

Training/validation groups Test groups Longitudinal data

preAD APOE+ APOE− NC preAD APOE+ APOE− Baseline MCI

N 162 70 92 212 19 9 10 16 16

Gender(M/F) 68/94 36/34 32/60 103/109 5/14 3/6 2/8 9/7 9/7

Age(years) 76.3 ± 5.4 75.3 ± 6.3 76.9 ± 4.5 71.8 ± 5.7b 75.3 ± 5.1 74.7 ± 6.9 75.9 ± 3.4 71.5 ± 5.8b 80.8 ± 5.4

EDU 15.4 ± 3.0 14.9 ± 3.5 15.8 ± 2.5 16.7 ± 2.5b 15.4 ± 2.1 16.0 ± 2.4 14.8 ± 1.7 16.13 ± 2.4 16.13 ± 2.4

MMSE 28.7 ± 1.6 28.5 ± 1.6 28.8 ± 1.6 29.1 ± 1.3b 28.7 ± 1.3 28.8 ± 1.1 28.6 ± 1.6 29.2 ± 0.9 27.43 ± 2.0

CDRSB 0.3 ± 0.7 0.3 ± 0.8 0.3 ± 0.7 0.2 ± 0.4b 0.3 ± 0.9 0.5 ± 1.2 0.1 ± 0.2 0.1 ± 0.2 1.63 ± 0.9

APOE ε4 positive rate 70/162 N/A N/A 34/212 9/19 N/A N/A 3/13 3/13

All data except APOEε4 positive rate were presented as mean ± standard deviation. EDU, education; MMSE, Mini-mental State Examination; CDRSB, clinical dementia
rating sum of boxes.
aAge, Education, MMSE and CDRSB performed a two-sample t-test between NC and preAD groups; Gender performed a Chi-square test between NC and preAD groups.
bMeans that there was a significant difference (p < 0.05) between the preAD group and the NC group in the training/validation group and test group with two-sample
t-tests.

TABLE 2 | Classification performance of different DL models in the pre-training step.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC

Training/Validation Groups

AlexNet 96.28 ± 3.24 94.86 ± 5.88 97.38 ± 2.46 0.962 ± 0.04

ZF-Net 98.18 ± 1.88 97.55 ± 3.50 98.83 ± 1.98 0.980 ± 0.02

ResNet18 95.68 ± 2.66 94.49 ± 4.93 96.58 ± 3.05 0.962 ± 0.03

ResNet34 96.29 ± 2.54 96.62 ± 2.26 96.02 ± 3.58 0.964 ± 0.02

InceptionV3 97.63 ± 2.43 95.91 ± 4.99 98.95 ± 1.35 0.976 ± 0.01

Xception 97.02 ± 3.84 97.62 ± 3.62 96.54 ± 5.15 0.973 ± 0.03

Test Groups

AlexNet 87.91 ± 3.06 78.95 ± 4.30 95.00 ± 3.83 0.869 ± 0.03

ZF-Net 87.91 ± 2.40 79.47 ± 3.88 94.58 ± 2.01 0.870 ± 0.03

ResNet18 87.67 ± 1.91 84.21 ± 3.50 90.41 ± 2.01 0.872 ± 0.02

ResNet34 89.53 ± 2.51 87.89 ± 2.54 90.83 ± 5.12 0.893 ± 0.03

InceptionV3 84.88 ± 2.26 84.21 ± 3.51 85.42 ± 4.05 0.848 ± 0.03

Xception 88.84 ± 2.14 88.40 ± 3.30 89.17 ± 4.48 0.886 ± 0.04

The bold values indicate classification results of the optimal model ResNet34 for Base DLR Model Selection.

experiments, including: (1) Clinical model: clinical characteristics
included demographic data, neuropsychological cognitive
assessment results, and APOE ε4 genotyping characteristics of all
subjects. (2) Hippocampal model: the hippocampal volumes were
used as inputs for the classification; (3) Traditional radiomics
model: traditional radiomics features of were extracted for
the classification. In this experiment, we extracted features by
using the radiomics tool developed by Vallieres et al.4 We used
brain DMN regions as ROIs and performed texture analysis on
each input ROI using the "Texture Toolbox" in the Radiomics
Toolbox. Feature extraction steps included wavelet bandpass
filtering, isotropic resampling, Lloyd–Max quantization and
feature calculation. The detailed extraction process of the
radiomics features were described in the previous studies
(36, 37).

Three comparative experiments were employed in this study:
(1) NC vs. preAD; (2) NC vs. preAD APOE+; and (3) NC vs.
preAD APOE−. Ten-fold cross-validation was performed with
100 time repetitions. We calculated accuracy, sensitivity, and

4https://github.com/mvallieres/radiomics

specificity to evaluate the classification results. The mathematical
expressions of the three indicators were as follows:

Accuracy =
TP

TP + FP

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN

Longitudinal Study
The 12 individuals with longitudinal data were used to validate
the proposed DLR model. Firstly, we calculated the probability
value of SVM classifier, and defined it as the decision score; then
we compared the decision scores in both baseline and MCI states
in 12 individuals.

Statistical Analysis
In this study, we used two-sample t-tests or chi-square tests to
compare demographic and clinical characteristics between the
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TABLE 3 | The classification results of preAD vs. NC.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

Hippocampal model 76.20 ± 6.05 44.72 ± 10.58 99.05 ± 2.27

Traditional radiomics model 77.01 ± 7.77 62.61 ± 10.31 87.73 ± 9.50

Clinical model 85.66 ± 5.24 83.31 ± 9.56 87.70 ± 7.65

DLR model 99.40 ± 3.23 99.00 ± 4.00 99.56 ± 1.65

Test Groups

Hippocampal model 72.44 ± 1.46 42.68 ± 2.93 96.09 ± 1.31

Traditional radiomics model 82.00 ± 4.09 68.59 ± 8.35 92.62 ± 4.58

Clinical model 79.65 ± 2.21 82.75 ± 4.24 77.20 ± 2.61

DLR method 89.85 ± 1.12 94.74 ± 0. 10 85.98 ± 2.01

Bold values represent the classification performance of our proposed model.

NC and preAD groups and between the APOE+ and APOE−
subgroups. All statistical analyses were performed using SPSS
version 22.0 software (SPSS Inc., Chicago, IL, United States)
and performed in Matlab2019b (Mathworks Inc., Sherborn,
MA, United States). A p-value < 0.05 was considered to be
significantly different.

RESULTS

Demographic Information
The results of demographic data were shown in Table 1. There
was a significant difference in age and years of education between
the preAD group and the NC group in the training/validation
group (p < 0.001), and there was a difference in CDRSB and
MMSE (CDRSB: p = 0.006, MMSE: p = 0.003), while no difference
in gender between the two groups. There was no significant
difference in gender, education level, CDRSB and MMSE between
the preAD group and the NC group in the test group, whereas
there was a difference in age (p = 0.03).

Pre-training for Candidate Deep
Learning Models
Table 2 summarized the classification performance of six
candidate DL models, including classification accuracy,
sensitivity, and specificity. By comparing the results of the two
groups, ResNet34 was selected to be the best model. Therefore,
we chose the pre-training ResNet34 model and extracted DLR
features for the next step.

Comparative Experiments
Normal Control vs. Preclinical Alzheimer’s Disease
Group
Table 3 showed the classification results of the four models
between NC and preAD groups. Among the four models,
the DLR model showed the best classification performance
in the test group, with the accuracy of 89.85% ± 1.12%,
sensitivity of 94.74% ± 0.1%, and specificity of 85.98% ± 2.01%.
The performance of the hippocampal model, traditional
radiomics model, and clinical model were all significantly lower
than DLR model, with the accuracies of 72.44% ± 1.37%,

FIGURE 4 | ROC curves of the four models between NC and preAD groups.

TABLE 4 | The classification results of NC vs. preAD APOE+.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

Hippocampal model 76.90 ± 11.62 49.78 ± 26.80 99.37 ± 5.44

Traditional radiomics model 71.11 ± 10.60 54.42 ± 16.69 83.66 ± 9.33

Clinical model 71.11 ± 10.98 50.80 ± 15.66 84.94 ± 12.35

DLR model 99.94 ± 0.59 99.95 ± 0.01 99.88 ± 3.72

Test Groups

Hippocampal model 69.00 ± 6.84 30.71 ± 16.94 96.84 ± 15.91

Traditional radiomics model 78.87 ± 5.00 54.42 ± 16.21 83.66 ± 6.72

Clinical model 71.39 ± 4.65 32.84 ± 13.65 96.17 ± 4.37

DLR model 92.80 ± 2.61 88.89 ± 0.01 94.47 ± 3.72

Bold values represent the classification performance of our proposed model.

TABLE 5 | The classification results of NC vs. preAD APOE−.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

Hippocampal model 76.88 ± 12.86 75.46 ± 23.37 77.83 ± 12.60

Traditional radiomics model 73.50 ± 9.44 73.20 ± 12.45 72.51 ± 12.35

Clinical model 70.28 ± 9.69 60.20 ± 16.61 79.22 ± 12.05

DLR model 95.74 ± 11.85 89.60 ± 10.54 98.03 ± 10.76

Test Groups

Hippocampal model 63.36 ± 7.42 75.82 ± 24.86 50.90 ± 21.02

Traditional radiomics model 83.87 ± 3.04 78.00 ± 11.35 86.67 ± 6.66

Clinical model 70.10 ± 3.50 62.03 ± 7.93 73.95 ± 7.27

DLR model 85.45 ± 9.04 90.40 ± 9.47 83.10 ± 11.66

Bold values represent the classification performance of our proposed model.

82.00% ± 4.09% and 79.65% ± 2.21%, sensitivities of
42.68% ± 2.93%, 68.59% ± 8.35% and 82.754% ± 4.24%,
specificities of 96.09% ± 1.31%, 92.62% ± 4.58% and
77.20%± 2.61%, respectively.
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FIGURE 5 | ROC curves of the four models between NC and preAD APOE+ groups (left) and between NC and preAD APOE– groups (right).
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FIGURE 6 | The scores of the longitudinal data in preAD stage and MCI stage.

Figure 4 presented the ROC curves of the four models.
The mean AUCs (± SD) for the hippocampal model,
traditional radiomics model, clinical model, and DLR model
in were 0.691 ± 0.012, 0.806 ± 0.013, 0.800 ± 0.021 and
0.904± 0.014, respectively.

Normal Control vs. Preclinical Alzheimer’s Disease
Subgroups
Table 4 showed the classification results between NC and
preAD APOE+ groups. The accuracy, sensitivity and specificity
of the DLR model in the test group were 92.80% ± 2.61%,
88.89% ± 0.01%, and 94.47% ± 3.72%. The performance of the
hippocampal model, traditional radiomics model, and clinical
model were all significantly lower than our proposed model, with
the accuracies of 72.44%.

Table 5 showed the classification results between NC and
preAD APOE− groups. The accuracy, sensitivity and specificity
of the DLR model in the test group were 85.45 ± 9.04%,
90.40% ± 9.47%, and 83.10% ± 11.66%. The performance of
the hippocampal model, traditional radiomics model, and clinical
model were all significantly lower than our proposed model,

with the accuracies of 63.36% ± 7.42%, 83.87% ± 3.04%, and
70.10% ± 3.50%. In Tables 3, 4, the bold values represented the
classification performance of the our proposed method.

Figure 5 showed the ROC curves of the four models. The
mean AUCs (± SD) for the hippocampal model, traditional
radiomics model, clinical model and the best DLR model between
NC and preAD APOE+ were 0.638 ± 0.061, 0.728 ± 0.024,
0.645 ± 0.041 and 0.917 ± 0.010, and between NC and preAD
APOE− were 0.634 ± 0.075, 0.823 ± 0.041, 0.679 ± 0.042, and
0.868± 0.011, respectively.

Longitudinal Study
Figure 6 showed the results of the longitudinal study. The
decision scores had a slight upward trend from the PreAD
baseline to the MCI stage. The results showed that our model also
had a great prediction performance.

DISCUSSION

Currently, DLR is the hot spot and focus of current imaging
development. In view of its superiority in disease diagnosis,
DLR methods have been successfully applied in tumor genotype
prediction, preoperative analysis, prognosis evaluation, and
cancer diagnosis, etc., but DLR research for neurological
diseases remained lacking. In this study, we proposed a DLR
model to distinguish cognitively normal adults at risk of
Alzheimer’s disease from normal control based on T1-weighted
structural MRI images. Compared with other traditional models,
such as hippocampal model, clinical model or traditional
radiomics model, our proposed DLR model achieved best
classification results.

In the comparative experiments, the DLR method achieved
the highest accuracy in both training/validation group
(99.40% ± 3.23%) and separate test group (89.85% ± 1.12%).
Therefore, we proved the robustness of the DLR model.

Currently, several studies have investigated the classification
between preAD and NC by using machine learning or traditional
quantitative methods. For example, Ding et al. distinguished
preAD from NC by investigating the coupling relationship
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between glucose and oxygen metabolism from hybrid PET/MRI,
with an AUC of 0.787 (38). Li et al. used a voxel-based SSM/PCA
method to analyze fluorodeoxyglucose-PET (FDG-PET) images
with AUC of 0.815 (39), Li et al. conducted an exploratory study
for identifying preAD based on radiomics analysis of MRI and
obtained an average accuracy of 83.7% [T. (17)]. In comparison to
previous studies, our DLR model achieved the best classification
results. The reason can be explained as following: (1) the DLR
method can directly extract high-throughput image features from
CNN. Since it does not involve additional feature extraction
operations, it will not bring additional errors; (2) the results
of traditional methods were usually influenced by individual
factors and imaging machine parameters; while the DLR method
combined DLR image features and clinical information, which
partly solved the problems of individual heterogeneity.

To demonstrate the robustness of the proposed DLR model,
we performed experiments in the APOE ε4 subgroup analysis.
Notably, cerebral amyloid deposition is also affected by the
ApoE ε4 genotype (40). Higher levels of amyloid accumulation
were observed in SCD subjects with ApoE ε4 carriers than
noncarriers (41, 42). Therefore, we proposed to add ApoE
ε4 genotype features to further validate the accuracy of the
model. Notably, the DLR model achieved better classification
results between NC vs. preAD APOE+ (92.80% ± 2.61%)
than the two other experiments (89.85% ± 1.12% and
85.45% ± 9.04%). The high sensitivity (88.89% ± 0.01%) and
specificity (94.47% ± 3.72%) results also showed that the DLR
model was very powerful in identifying cognitively normal adults
at risk of Alzheimer’s disease.

Although the DLR method could distinguish preAD from
NC, it still had some limitations. First, more data was still
needed to verify the generality and robustness of the proposed
method. In this study, subjects were collected only from the
ADNI database. Whether our model was powerful for other
racial populations need further exploration. Secondly, we only
compared six DL models. Although the Resnet34 model achieved
good classification performance, it was unknown whether other
DL models beyond the six were more suitable. In addition, we
used the whole brain MRI image to train the DLR models in
this study. However, future studies were required to explore
whether DLR models based on the hippocampus or entorhinal
cortex instead were more effective. Furthermore, in this study, 2D
DLR models were employed. However, whether 3D DLR models
could achieve better classification performances need further
exploration. Finally, the proposed DLR model was based on T1-
MRI images. It may be possible to improve the classification
performance of DLR by combining other imaging modals, such
as FDG PET, amyloid PET and tau PET images.

CONCLUSION

We proposed a DLR method based on T1-MRI images
to discriminate preAD and NC. The results demonstrated
that our proposed DLR method could improve diagnostic
performance. The DLR method had potentials for clinical
applications in the future.
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